Towards energy-efficient scheduling for real-time tasks under uncertain cloud computing environment
نویسندگان
چکیده
Green cloud computing has become a major concern in both industry and academia, and efficient scheduling approaches show promising ways to reduce the energy consumption of cloud computing platforms while guaranteeing QoS requirements of tasks. Existing scheduling approaches are inadequate for realtime tasks running in uncertain cloud environments, because those approaches assume that cloud computing environments are deterministic and pre-computed schedule decisions will be statically followed during schedule execution. In this paper, we address this issue. We introduce an interval number theory to describe the uncertainty of the computing environment and a scheduling architecture to mitigate the impact of uncertainty on the task scheduling quality for a cloud data center. Based on this architecture, we present a novel scheduling algorithm (PRS) that dynamically exploits proactive and reactive scheduling methods, for scheduling real-time, aperiodic, independent tasks. To improve energy efficiency, we propose three strategies to scale up and down the system’s computing resources according to workload to improve resource utilization and to reduce energy consumption for the cloud data center. We conduct extensive experiments to compare PRS with four typical baseline scheduling algorithms. The experimental results show that PRS performs better than those algorithms, and can effectively improve the performance of a cloud data center.
منابع مشابه
An Effective Task Scheduling Framework for Cloud Computing using NSGA-II
Cloud computing is a model for convenient on-demand user’s access to changeable and configurable computing resources such as networks, servers, storage, applications, and services with minimal management of resources and service provider interaction. Task scheduling is regarded as a fundamental issue in cloud computing which aims at distributing the load on the different resources of a distribu...
متن کاملGASA: Presentation of an Initiative Method Based on Genetic Algorithm for Task Scheduling in the Cloud Environment
The need for calculating actions has been emerged everywhere and in any time, by advancing of information technology. Cloud computing is the latest response to such needs. Prominent popularity has recently been created for Cloud computing systems. Increasing cloud efficiency is an important subject of consideration. Heterogeneity and diversity among different resources and requests of users in ...
متن کاملIntegrated modeling and solving the resource allocation problem and task scheduling in the cloud computing environment
Cloud computing is considered to be a new service provider technology for users and businesses. However, the cloud environment is facing a number of challenges. Resource allocation in a way that is optimum for users and cloud providers is difficult because of lack of data sharing between them. On the other hand, job scheduling is a basic issue and at the same time a big challenge in reaching hi...
متن کاملTask Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...
متن کاملGreen Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Systems and Software
دوره 99 شماره
صفحات -
تاریخ انتشار 2015